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Abstract
Starting from the continuous time random walk (CTRW) scheme with the
space-dependent waiting-time probability density function (PDF) we obtain
the time-fractional diffusion equation with varying in space fractional order of
time derivative. As an example, we study the evolution of a composite system
consisting of two separate regions with different subdiffusion exponents and
demonstrate the effects of non-trivial drift and subdiffusion whose laws are
changed in the course of time.

PACS numbers: 02.50.−r, 05.40.Fb, 05.10.Gg

1. Recently, kinetic equations with partial fractional derivatives were recognized as a useful
tool for the description of anomalous diffusion and relaxation phenomena. Examples include
systems exhibiting Hamiltonian chaos, disordered medium, underground water pollution,
dynamics of protein molecules, motions under the influence of optical tweezers, reactions in
complex systems and more, see reviews on fractional kinetics [1–8] and references therein.
In particular, the kinetic equation with time-fractional derivative is used for the description
of subdiffusion processes, i.e., those for which the mean-squared displacement (MSD) grows
in time slower than linearly [2]. Also, it describes slow relaxation processes which are
characterized by stretched exponential or power-law response function [4]. Up to now, only
the simplest forms of fractional kinetic equations have been considered. On the other hand, it
became clear that further theoretical investigations are required in order to incorporate adequate
tools for the description of more complicated (and more realistic) random processes, which
are described by a set of characteristic exponents, and are therefore of multi-fractional type.
Such processes are believed to provide useful models for a host of non-homogeneous and non-
stationary processes, thus generalizing more simple fractal processes and exhibiting fractional
order behaviour that may vary with time, space and/or control parameters [9]. An adequate
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kinetic description of these processes requires the use of generalized fractional kinetics based
on the concept of variable order fractional operators. This calculus was proposed in [10, 11]
and very recently was introduced in engineering [12] and in physics [13]. In the present letter
we introduce a new type of fractional diffusion equation, namely, the time-fractional diffusion
equation with time-fractional derivative whose order depends on space, and we demonstrate
by taking a particular example, the non-trivial drift and diffusion properties of such systems.

2. The time-fractional diffusion equation follows as continuous limit from a corresponding
generalized master equation for continuous time random walk (CTRW). To obtain a valid form
of time-fractional diffusion equation for an inhomogeneous medium, let us first consider an
elementary derivation of the generalized master equation, as a balance equation between gain
and loss of particles. Although several derivations of such an equation are available [14–17],
we give here a heuristic derivation which is especially suited for the situation at hand. In what
follows we concentrate on a one-dimensional situation. Generalization to higher dimensions
is obvious.

The generalized master equation follows from the two balance conditions guaranteeing
the probability conservation: a local one (giving the balance between the probability gain and
loss at one site) and the one for transitions between the two sites (representing the continuity).
In a non-biased CTRW a particle arriving to a site i at some time t stays there for a sojourn
time τ , given by the probability density function (PDF) ψi(τ ). The probability for a particle
which arrived at the site at time t ′ to leave it at time between t > t ′ and t + dt is given by
ψi(t − t ′) dt . Leaving a site, it makes a random step in either direction with probability 1/2.
A balance equation at each site reads

d

dt
pi(t) = J +

i (t) − J−
i (t), (1)

where J±
i are gain and loss fluxes for the site i. Moreover, the particle arriving at the site i at

time t ′ arrives either from the left or from the right. Probability conservation for transitions
between sites for a non-biased CTRW then reads

J +
i (t) = 1

2J−
i−1(t) + 1

2J−
i+1(t), (2)

which allows us to express the balance equation on a site through the loss fluxes only:

d

dt
pi(t) = 1

2
J−

i−1(t) +
1

2
J−

i+1(t) − J−
i (t). (3)

A generalized master equation is a combination of this continuity equation and the equation
for J−

i (t) following from the assumption about the distribution of sojourn times: the particles
leaving site i at some time t either were at i from the very beginning (from time t = 0) or
arrived at i later, at some time 0 < t ′ < t :

J−
i (t) = ψi(t)pi(0) +

∫ t

0
ψi(t − t ′)J +

i (t ′) dt ′. (4)

This equation can be easily solved when noting that J +
i (t) = ṗi(t) + J−

i (t), so that

J−
i (t) = ψi(t)pi(0) +

∫ t

0
ψi(t − t ′)

[
d

dt ′
pi(t

′) + J−
i (t ′)

]
dt ′, (5)

which expresses the loss flux at a site through the probability pi(t). This integral equation is
easily solved via Laplace transformation,

J̃−
i (s) = sψ̃ i(s)

1 − ψ̃ i(s)
p̃i(s) ≡ �̃i(s)p̃i(s), (6)
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where ‘∼’ denotes the Laplace transform, or, in the time domain,

J−
i (t) =

∫ t

0
�i(t − t ′)pi(t

′) dt ′ (7)

with �i(t) as the inverse Laplace transform of �̃i(s) = s
ψ̃i (s)

1−ψ̃ i (s)
. We note that this last

equation can be rewritten in the following form having better analytical properties: since the
multiplication by s in Laplace space corresponds to taking a time derivative in the time domain,
we can put down

J−
i (t) = d

dt

∫ t

0
Mi(t − t ′)pi(t

′) dt ′ (8)

with Mi(t) being the inverse Laplace transform of M̃i(s) = ψ̃ i(s)/(1 − ψ̃ i(s)). Inserting this
last equation into the balance equation (3), one obtains

ṗi(t) = 1

2

d

dt

∫ t

0
Mi−1(t − t ′)pi−1(t

′) dt ′

+
1

2

d

dt

∫ t

0
Mi+1(t − t ′)pi+1(t

′) dt ′ − d

dt

∫ t

0
Mi(t − t ′)pi(t

′) dt ′. (9)

Assuming that the dependence on i is slow, we can change from a difference to a differential
equation. With the lattice constant a and Mi(t) = M(t, x) we get

∂

∂t
p(x, t) = a2 ∂2

∂x2

∂

∂t

∫ t

0
M(x, t − t ′)p(x, t ′) dt ′. (10)

For waiting-time distributions being power laws, ψi(t) ∼= t−1−βi , t → ∞, one gets M(x, t) ∝
t−1+β(x), and the integral operator is the kernel of a Riemann–Liouville derivative of variable
order,

∂

∂t
p(x, t) = ∂2

∂x2

(
K(x)D

1−β(x)
t p(x, t)

)
, p(x, 0) = δ(x), (11)

where

D
µ(x)
t p(x, t) ≡ 1

�(1 − µ(x))

∂

∂t

∫ t

0
dτ

p(x, τ )

(t − τ)µ(x)
(12)

is the generalization of the Riemann–Liouville derivative of order µ, 0 < µ � 1, which has a
Laplace transform,

L
{
D

µ
t p(x, t)

} = sµp̃(x, s), (13)

and K is a positive function of x, which has a meaning of a diffusion coefficient. Here, the
order of differentiation is important: first, the position-dependent time-fractional derivative
operator acts on the PDF, and then the second space derivative acts.

3. Performing the Laplace transformation of equation (11) and introducing a new function
g̃(x, s) = K(x)s−β(x)p̃(x, s) we get

d2

dx2
g̃(x, s) − sβ(x)

K(x)
g̃(x, s) = −δ(x)

s
. (14)

This equation is solved with the use of the boundary conditions at infinity, g̃(x = ±∞, s) = 0,
and matching conditions at x = 0, see below. We present here a simple particular case
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which allows us to demonstrate non-trivial properties of the solutions of time-fractional
diffusion equation with space-dependent time-fractional derivative. Namely, we consider
a composite system consisting of two separated regions characterized by different constant
diffusion exponents and diffusion coefficients:

β(x) =
{

β+, x > 0

β−, x < 0,
K(x) =

{
K+, x > 0

K−, x < 0.
(15)

We assume without loss of generality that β+ > β−. Then, equation (14) is easily solved
separately on the right and left semi-axes, giving

g̃±(x, s) = C±(s) exp

(
−|x|sν±

√
K±

)
, ν± = β±

2
(16)

for x > 0 and x < 0, respectively. Here, the boundary conditions at infinity have been already
used. The first matching condition at x = 0 stems from continuity of the PDF, p̃(0+, s) =
p̃(0−, s), which gives

s2ν+

K+
C+(s) − s2ν−

K−
C−(s) = 0, (17)

and the second is obtained after integration equation (14) around x = 0,

sν+

√
K+

C+(s) − sν−
√

K−
C−(s) = 1

s
. (18)

Equations (17) and (18) allow us to obtain the coefficients C±(s), and instead of equation (16)
we get

p̃±(x, s) =
exp

(−|x|sν±√
K±

)
s
(√

K+s−ν+ +
√

K−s−ν−
) . (19)

Note that the normalization condition,
∫ 0
−∞ p̃−(x, s) dx +

∫ ∞
0 p̃+(x, s) dx = s−1 is fulfilled.

Further, the functions p̃±(x, s) are completely monotonic with respect to s, which can be
proved with the use of criteria of complete monotonicity [18], and thus, equation (19), indeed
represents the PDF. Now to get the first and the second moments of the PDF, describing
drift and diffusion properties respectively, we first obtain their Laplace transforms using
equation (19) and then take an inverse Laplace transformation. For the drift, we get

〈x(t)〉 =
( √

K+t
ν+

�(1 + ν+)
−

√
K−tν−

�(1 + ν−)

)
, (20)

whereas for the variance we obtain

Var{x} = 〈x2(t)〉 − 〈x(t)〉2 = A+K+t
β+ + A

√
K+K−t (β++β−)/2 + A−K−tβ− (21)

with

A± = 2

�(1 + β±)
− 1

[�(1 + β±/2)]2
,

A = 2

�(1 + β+/2)�(1 + β−/2)
− 2

�(1 + (β+ + β−)/2)
.

(22)

It follows from equations (20)–(22) that the PDF initially concentrated at x = 0 evolves as
follows: at small times the centre of the PDF shifts to the negative direction, that is, towards
the side of smaller β, that is, β− in our case, and the mean displacement grows as tβ−/2.
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At the same time the PDF spreads and the variance growth is proportional to tβ− . At a critical
time instant defined as

tcr =
[√

K−
K+

�(1 + β+/2)

�(1 + β−/2)

]2/(β+−β−)

, (23)

the mean value 〈x(t)〉 of the PDF stops moving and then at t > tcr accelerates to the positive
side of greater β, that is, β+ in our case. The mean displacement grows as tβ+/2, and the
mean-squared displacement at large times evolves as tβ+ .

Now, we turn to the analysis of the PDF, see equation (19). Recalling the Laplace-
transform pairs,

exp(−sν)/lν(t), 0 < ν < 1 (24)

and

sµ−σ

sµ + λ

/
tσ−1Eµ,σ (−λtµ), λ, µ, σ > 0, (25)

where lν(t) is the extremely asymmetric Lévy stable PDF with the Lévy index ν [18], and
Eµ,σ (z) is the generalized Mittag–Leffler function [19], we present the PDF in the convolution
form as

p±(x, t) =
∫ t

0
dτ

1

ζ 1/ν±
lν

(
τ

ζ 1/ν±

)
(t − τ)−ν−

√
K−

Eν+−ν−,1−ν−

(
−

√
K+

K−
(t − τ)ν+−ν−

)
(26)

where ζ = (
√

K±/|x|)1/ν± , the sign ‘−’ corresponds to the negative semi-axis and the sign
and ‘+’ to the positive semi-axis, respectively. Note that ζ−1/ν l(τ/ζ 1/ν) = δ(τ ) at x = 0, so
that equation (26) delivers the same result as can be obtained from equation (19) by setting
x = 0 and then carrying out an inverse Laplace transform.

We also note that the particular case of the system considered here, namely, the case
of the composite normal—subdiffusive system with β+ = 1 was considered in the papers
[20, 21]. The results obtained there for the drift and the variance at large times correspond
to the particular cases of the limits given by equations (20) and (21) at large t, respectively,
if one put β+ = 1.

4. In summary, based on the CTRW approach for the spatially inhomogeneous system with
the power-law waiting-time PDF whose exponent varies in space we obtain the time-fractional
diffusion equation with varying in space order of the time derivative of the Riemann–Liouville
form in the right-hand side of the equation. For this equation, the order in which derivatives
act is important, namely, first the time derivative acts on the PDF and then the second space
derivative acts. By taking a simple example of a composite medium consisting of two
semi-infinite subdiffusive systems with different subdiffusion exponents, we demonstrate the
appearance of the drift which at small times is in the direction of the region with smaller
diffusion exponent and at large times is in the direction of larger diffusion exponent. We also
show the change of the time dependence for drift and diffusion spreading in the course of time.
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